3.2.64 \(\int \frac {\sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}} \, dx\) [164]

Optimal. Leaf size=24 \[ \frac {x \sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}} \]

[Out]

x*sec(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {17, 8} \begin {gather*} \frac {x \sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/Sqrt[b*Sec[c + d*x]],x]

[Out]

(x*Sqrt[Sec[c + d*x]])/Sqrt[b*Sec[c + d*x]]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}} \, dx &=\frac {\sqrt {\sec (c+d x)} \int 1 \, dx}{\sqrt {b \sec (c+d x)}}\\ &=\frac {x \sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 24, normalized size = 1.00 \begin {gather*} \frac {x \sqrt {\sec (c+d x)}}{\sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/Sqrt[b*Sec[c + d*x]],x]

[Out]

(x*Sqrt[Sec[c + d*x]])/Sqrt[b*Sec[c + d*x]]

________________________________________________________________________________________

Maple [A]
time = 34.76, size = 32, normalized size = 1.33

method result size
default \(\frac {\sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \left (d x +c \right )}{d \sqrt {\frac {b}{\cos \left (d x +c \right )}}}\) \(32\)
risch \(\frac {\sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, x}{\sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}\) \(54\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(1/cos(d*x+c))^(1/2)/(b/cos(d*x+c))^(1/2)*(d*x+c)

________________________________________________________________________________________

Maxima [A]
time = 0.57, size = 26, normalized size = 1.08 \begin {gather*} \frac {2 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{\sqrt {b} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

2*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/(sqrt(b)*d)

________________________________________________________________________________________

Fricas [A]
time = 3.41, size = 101, normalized size = 4.21 \begin {gather*} \left [-\frac {\sqrt {-b} \log \left (2 \, \sqrt {-b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )^{\frac {3}{2}} \sin \left (d x + c\right ) + 2 \, b \cos \left (d x + c\right )^{2} - b\right )}{2 \, b d}, \frac {\arctan \left (\frac {\sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {b} \sqrt {\cos \left (d x + c\right )}}\right )}{\sqrt {b} d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/2*sqrt(-b)*log(2*sqrt(-b)*sqrt(b/cos(d*x + c))*cos(d*x + c)^(3/2)*sin(d*x + c) + 2*b*cos(d*x + c)^2 - b)/(
b*d), arctan(sqrt(b/cos(d*x + c))*sin(d*x + c)/(sqrt(b)*sqrt(cos(d*x + c))))/(sqrt(b)*d)]

________________________________________________________________________________________

Sympy [A]
time = 11.35, size = 22, normalized size = 0.92 \begin {gather*} \frac {x \sqrt {\sec {\left (c + d x \right )}}}{\sqrt {b \sec {\left (c + d x \right )}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(b*sec(d*x+c))**(1/2),x)

[Out]

x*sqrt(sec(c + d*x))/sqrt(b*sec(c + d*x))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [B]
time = 0.30, size = 27, normalized size = 1.12 \begin {gather*} \frac {x\,\sqrt {\frac {b}{\cos \left (c+d\,x\right )}}}{b\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(b/cos(c + d*x))^(1/2),x)

[Out]

(x*(b/cos(c + d*x))^(1/2))/(b*(1/cos(c + d*x))^(1/2))

________________________________________________________________________________________